Proof of Theorem 2 in "Money and the Decentralization of Exchange" *and Some Comments

Theorem 2: There is no trading rule that (i) uses information D.3; (ii) satisfies A ; and (iii) completes trading within a single round for any (p, Z, B) satisfying U .

Proof: As the original paper attempted to, I find two economies such that in a certain meeting, (i) the two traders cannot decide which economy they are in; and (ii) they have to make different trades depending on which economy they are in.

There are five traders, $1,2, \ldots, 5$, there are five periods, $t=1,2, \ldots, 5$, and there are four types of goods, $1,2,3$ and 4 . The sequence of meetings is as follows:

$$
\begin{aligned}
& t=1: \overline{25}, \overline{34}, \overline{,} . \\
& t=2: \overline{15}, \overline{23}, \overline{4} . \\
& t=3: \overline{12}, \overline{45}, \overline{3} . \\
& t=4: \overline{14}, \overline{35}, \overline{2} . \\
& t=5: \overline{13}, \overline{24}, \overline{5} .
\end{aligned}
$$

Two traders under the same line are meeting with each other. For example, in $t=1$, trader 2 meets with 5 and trader 3 meets with 4, but trader 1 does not meet with any other trader.

First, each type of good has the same price, so $p=(1,1,1,1)$.
Let N be the matrix of excess demands, where

$$
N=\left[\begin{array}{cccc}
4 & -2 & -2 & 0 \\
-4 & 1 & 1 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

[^0]Each row represents a trader and each column represents a type of good. For example, $N_{12}=-2$ means that trader 1's excess demand for good 2 is -2 .

As in the original paper, the endowment of trader i in good j is $\left[-N_{i j}\right]^{+}$. This endowment is the minimum amount necessary to make sure that no trader desires to hold a negative amount of any good. This setup makes the goods as scarce as possible so that completing trades becomes as difficult as possible. (This is a mathematical statement that can be easily proved.)

Below, I go through individual periods. First, trader 5 has zero endowmentl, so he can never trade. In $t=1$, trader 3 meets with 4 , but they both have only good 4. Therefore, they do not make any trade, and no trade occurs in $t=1$.;

In $t=2$, traders 2 and 3 can trade. After trading with 2 , trader 3 does not trade with anyone until he trades with trader 1 in $t=5$, and both trader 1 and 3 want to hold zero amount of good 4 . Therefore, trader 3 must give 1 unit of good 4 to trader 2 in $t=2$. In return, trader 2 gives 1 unit of good 1 to trader 3 , since it is the only type of good that he has. After $t=2$, the matrix of excess demands is:

$$
\left[\begin{array}{cccc}
4 & -2 & -2 & 0 \\
-3 & 1 & 1 & 1 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

In $t=3$, traders 1 and 2 can trade. Trader 2 needs to give 3 units of good 1 to trader 1 because only trader 1 demands good 1 ; after $t=3$, trader 2 meets with trader 4 in $t=5$, so $t=3$ is the last chance for trader 2 to pass his stock of good 1 to trader 1 .

In return, trader 1 needs to give 3 units of goods 2 and 3 . In $t=5$, he needs to give 1 unit of good 2 to trader 3 because trader 3 cannot receive that good from anyone else. Also, trader 4 will have only good 4 in $t=4$, so trader 1 must hold 1 unit of good 2 at the end of $t=3$. Therefore, trader 1 must give 1 unit of good 2 and 2 units of good 3 to trader 2 .

To complete the proof, I construct a similar but different economy. The price vector is the same, $p=(1,1,1,1)$. The matrix of excess demands, denoted by M, is

$$
M=\left[\begin{array}{cccc}
4 & -2 & -2 & 0 \\
-4 & 1 & 1 & 2 \\
0 & 0 & 1 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

M can be obtained from N by exchanging row 3 with row 4 . The endowment is also given in the same way: The endowment of trader i in $\operatorname{good} j$ is $\left[-M_{i j}\right]^{+}$.

Going through the same steps as I did for the other economy, I find that trader 1 needs to give 2 units of good 2 and 1 unit of good 3 to trader 2 in $t=3$. In the previous economy, trader 1 needed to give 1 unit of good 2 and 2 units of good 3 to trader 2.

Finally, I show that traders 1 and 2 cannot know whether they are in economy N or M in $t=3$. In both economies, the history of trader 1's excess demands is simply a repeat of $(4,-2,-2,0)$ because he never trades before $t=3$. In both economies, the history of trader 2's excess demands is: Before $t=2$, the excess demand is $(-4,1,1,2)$, and after $t=2$, it is $(-3,1,1,1)$.

This completes the proof.
In the proof, traders 1 and 2 have difficulty deciding what to do in $t=3$. Trader 1 needs to pay 3 units of goods to trader 2. It makes sense to pay at least 1 unit of each good to trader 2, but it is not clear in which good the remaining 1 unit should be paid. If trader 1 pays in the wrong type of good, that good will end up with a trader that does not want it. With decentralization, trader 1 has no way to determine which type of good is the right payment.

Such a difficulty can be avoided if there exists a good that can always be traded to make extra payments between traders. Money may serve as an example of such a good in the real world and theorem 4 in the original paper formalizes this idea.

[^0]: Author: Kyungmin Kim
 *Ostroy, Joseph M. and Ross M. Starr. 1974. "Money and the Decentralization of Exchange." Econometrica, 42:6. pp. 1093-1113.

